
1 Ceridian HCM Inc. (CDAY)
2 Physik-Institut, University of Zürich (UZH)
3 Department of Physics, University of Toronto
3 Vector Institute Toronto

Unfolding Measurement
Distributions
via Quantum Annealing
Speaker: Riccardo Di Sipio1
On behalf of: Kyle Cormier2, Peter Wittek3,4,†

Based on article JHEP 11(2019)128

Code repository: https://github.com/rdisipio/quantum_unfolding

https://link.springer.com/article/10.1007/JHEP11(2019)128
https://github.com/rdisipio/quantum_unfolding

Unfolding
Unfolding (a.k.a. “inverse problem” or
“deconvolution”) is the procedure of
correcting for distortions due to limited
resolution of the measuring device!

Not unique to physics: all you need is a
distorting transmission medium!

Training: knowing the truth, you estimate
the distortion via simulation, and invert
the relationship to “correct for it”!

Goal: compare results between
experiments, make results human-
friendly (e.g. de-blurred pictures)

Apply correction

“Hello my dear”

“Hello my deer”

“Hello my dear”

2

Picture of red giant !
star "1 Gruis!

[Nature 553, 310–312 (2018)]
NB: unrelated to “molecule folding” in chemistry

https://www.nature.com/articles/nature25001?utm_medium=affiliate&utm_source=commission_junction&utm_campaign=3_nsn6445_deeplink_PID100052570&utm_content=deeplink

Bin-by-Bin Ratio
Data represented by histograms, i.e. physical quantities
(“observables”) such as momentum or invariant mass are pooled #
into N bins within a given range e.g. [0, 1500]!

Simple method: binÑbyÑbin ratio !

Sources of distortion:!

$Backgrounds: entries due to a process mimicking that under
consideration (noise) !

$Migrations: measured value di%erent from true!

$Efficiency, Acceptance: entries mistakenly discarded (false
negatives) or taken into account (false positives)!

<z Use detector simulation (C++/FORTRAN) to estimate
distortions by filling the elements of a Response Matrix Rij. !

Matrix Inversion (MI) basically equivalent to least-squares
fitting

Correction factors method

1.Invert response matrix
2.Apply to data
3.Get the truth-level histogram

Matrix inversion method

3

Matrix Inversion
When uncertainties are added, MI unfolding amplifies
the “noise” e.g. by introducing sharp peaks to
compensate for the “smearing” of the true distribution
(“unregularized”)!

Matrix mostly diagonal ~ small migrations !

O%-diagonal elements often poorly known (e.g. entries
with large momentum measured with small momentum)!

Solution: add a “smoothness” constraint e.g. Tikhonov
regularization (abs of second derivative) to favour
“flatter” solutions!

Need to recast problem in terms of a likelihood (cost)
function to be optimized

4

1.Invert response matrix
2.Apply to data
3.Get the truth-level histogram

Matrix inversion method

R =

!

"
"
"
"
#

1 1 0 0 0
1 2 1 0 0
0 1 3 1 0
0 0 1 3 1
0 0 0 1 2

$

%
%
%
%
&

<latexit sha1_base64="9c2WVxZJxTBrW/knUYjRIxnbIxE=">AAACbXicbZFLSwMxEMez63t9rYoHH0iw+DiV3VpQD4LoxaOK1UK3lGw6bUOz2SXJimXpzU/oza/gxa9gWrfSqgMD//wmw0z+CRPOlPa8d8uemp6ZnZtfcBaXlldW3bX1RxWnkkKFxjyW1ZAo4ExARTPNoZpIIFHI4SnsXg/qT88gFYvFg+4lUI9IW7AWo0Qb1HBf7/EFdoIQ2kxkSUS0ZC99x8eHeJDeKINgyErj3DAvP5+MeM4m+Bgb8ZITgGj+zGu4Ba/oDQP/FX4uCiiP24b7FjRjmkYgNOVEqZrvJbqeEakZ5dB3glRBQmiXtKFmpCARqHo2dKuPDwxp4lYsTQqNh3S8IyORUr0oNDfNfh31uzaA/9VqqW6d1TMmklSDoN+DWinHOsYD63GTSaCa94wgVDKzK6YdIgnV5oMcY4L/+8l/xWOp6JeL53flwuVVbsc82kH76Bj56BRdoht0iyqIog/LtbasbevT3rR37b3vq7aV92ygibCPvgCwC6eE</latexit>

Likelihood-based Unfolding
No inherent matrix inversion, truth histogram found
by optimization (“likelihood” of being the correct
solution)!

Smoothness constraint introduces information from
the outside - solution more regular (reduced
variance) at the price of being biased!

Allows to calibrate sources of systematic error. #
Running time can be very large for O(Nbins) > 10 and
O(Nsyst) ~ 100 as in LHC experiments!

Ideally, a Quantum Annealer can speed up the
calculation - but cannot handle exp, factorial!

>> Some simpliÞcations are needed
5

Unfolding as Quantum Annealing

&=o%set#
'=encoding

Poisson ! Gaussian in large N limit, then take logL (NB: log(y) is monotonic)!

Represent numbers in binary (digitization) with n bits ! encode xi i=0…(N-1)
numbers with Nn qubits

6

Unfolding as Quantum Annealing

D =

!

"
"
#

! 2 1
1 ! 2 1

1 ! 2 1
1 ! 2

$

%
%
&

Laplacian operator!
Discrete second derivative

Strength parameter to control importance of regularization

Observed data per bin (decimal)

Unfolded histogram (binary, encoded by qubits)

Response matrix, estimated from simulation, multiplies binary to get decimal

Unfolded histogram (binary, encoded by qubits)

Sa
m

e
ob

je
ct

7

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/

Unfolding as Quantum Annealing

D =

!

"
"
#

! 2 1
1 ! 2 1

1 ! 2 1
1 ! 2

$

%
%
&

Laplacian operator!
Discrete second derivative

Strength parameter to control importance of regularization

Observed data per bin (decimal)

Unfolded histogram (binary, encoded by qubits)

Response matrix, estimated from simulation, multiplies binary to get decimal

Unfolded histogram (binary, encoded by qubits)

Sa
m

e
ob

je
ct

8

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/

Unfolding as Quantum Annealing

D =

!

"
"
#

! 2 1
1 ! 2 1

1 ! 2 1
1 ! 2

$

%
%
&

Laplacian operator!
Discrete second derivative

Strength parameter to control importance of regularization

Observed data per bin (decimal)

Unfolded histogram (binary, encoded by qubits)

Response matrix, estimated from simulation, multiplies binary to get decimal

Unfolded histogram (binary, encoded by qubits)

Sa
m

e
ob

je
ct

9

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/

Unfolding as Quantum Annealing

D =

!

"
"
#

! 2 1
1 ! 2 1

1 ! 2 1
1 ! 2

$

%
%
&

<latexit sha1_base64="OjtCAdnnrVHvwP/3zV70P2MS2xI=">AAACVHicbZHPS8MwFMfTzumsv6oevQSH4sXRDkE9CKIePE5wOljHSLO3GZamJUnFUfZH6kHwL/HiwbSbc/54kPB9n/de8vISJpwp7Xlvll1aKC8uVZadldW19Q13c+tOxamk0KQxj2UrJAo4E9DUTHNoJRJIFHK4D4eXefz+EaRisbjVowQ6ERkI1meUaIO67vAKn2EnCGHARJZEREv2NHYO63gfYz/fsNmCwCmcb5wT/OUU2J+hOe4EIHqzY7tu1at5heG/wp+KKppao+u+BL2YphEITTlRqu17ie5kRGpGOYydIFWQEDokA2gbKUgEqpMVQxnjPUN6uB9Ls4TGBZ2vyEik1CgKTabp70H9juXwv1g71f2TTsZEkmoQdHJRP+VYxzifMO4xCVTzkRGESmZ6xfSBSEK1+QfHDMH//eS/4q5e849qpzdH1fOL6TgqaAftogPko2N0jq5RAzURRc/o3UKWZb1aH3bJLk9SbWtas41+mL3+CR41pAc=</latexit>

Laplacian operator!
Discrete second derivative

Strength parameter to control importance of regularization

Observed data per bin (decimal)

Unfolded histogram (binary, encoded by qubits)

Response matrix, estimated from simulation, multiplies binary to get decimal

Unfolded histogram (binary, encoded by qubits)

Sa
m

e
ob

je
ct

10

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/

Unfolding as Quantum Annealing

D =

!

"
"
#

! 2 1
1 ! 2 1

1 ! 2 1
1 ! 2

$

%
%
&

Laplacian operator!
Discrete second derivative

Strength parameter to control importance of regularization

Observed data per bin (decimal)

Unfolded histogram (binary, encoded by qubits)

Response matrix, estimated from simulation, multiplies binary to get decimal

Unfolded histogram (binary, encoded by qubits)

Sa
m

e
ob

je
ct

11

Actual calculation of QUBO weights done “by hand” and using numpy.einsum
Same QUBO weights can be obtained using PyQUBO

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://pyqubo.readthedocs.io/en/latest/

Toy Models
$ Real-life applications not possible, lack of public data / sw!

$ Created two “toy models” to capture the essence of
common measurements at the LHC:!

$ Peaking (e.g. mass)!

$ Steeply falling (e.g. momentum)!

$ Compare wrt “benchmark” method [D’Agostini 2010]!

$ Toy model distortions (Rij) perfectly known!

$ Closure test: truth-level histogram of data (di) and
simulation the same, check consistency!

$ Uncertainty of QA unfolded histograms = 1 stdev from 20
executions with 5,000 reads from the QPU per run

Mass

En
tri

es

Momentum

En
tri

es

12

https://arxiv.org/abs/1010.0632

Results / 1

1 2 3 4 5
Bin

2

4

6

8

10

12

14

U
nf

ol
de

d

True value
DÕAgostini ItrBayes (Nitr =4)

QUBO (CPU, Neal)

QUBO (QPU, lower noise, ! =0)

QUBO (QPU, lower noise, ! =1)

QUBO (QPU, regular noise, ! =0)

QUBO (QPU, regular noise, ! =1)

$ In a simple case, comparable with execution
on CPU (simulated annealing “neal ”) and
with D’Agostini

1 2 3 4 5
Bin

0

200

400

600

800

1000

1200

U
nf

ol
de

d

True value
DÕAgostini ItrBayes (Nitr =4)

QUBO (CPU, Neal)

QUBO (QPU, ! = 0)

QUBO (QPU, ! = 0.1)

QUBO (QPU, ! = 0.25)

QUBO (QPU, ! = 1)

$Regularization promotes flatter solutions - known
to be problematic for steeply falling distributions!

$Strength depends on the problem

13

BLACK = TRUTH
RED = BENCHMARK
OTHERS = QUBO

Results / n-bits encoding

1 2 3 4 5
Bin

2

4

6

8

10

12

U
nf

ol
de

d

True value

lower noise 4bits

lower noise 8bits

regular noise 4bits

regular noise 8bits

$8-bits vs of 4-bits encoding:!

$ Increased “granularity” of the
solution !

$better numerical precision!

$ longer chains of qubits, 7 (4-
bits) and 15 (8-bits) qubits!

$Lower-noise: DW_2000Q_5!

$Regular-noise: DW_2000Q_2_1

14

BLACK = TRUTH
RED = BENCHMARK
OTHERS = QUBO

Role of Systematic Uncertainties
$Sources of systematic uncertainty shift the

value yi of each bin by a certain amount
(yi to be determined from best-fit!

$±1) variations si estimated from simulation!

$Interpolation done during the optimization!

$Vector x (unfolded histogram) and matrix
Rij extended to include strength of
systematics zi in 1) units #
(e.g. +1) = si, -0.5) = -0.5 si)!

$Parameter * controls relative importance
of systematics in optimization

Unregularized!
Matrix Inversion

Tikhonov #
Regularization

Systematic!
Shifts

15

Results / Unfolding with Systematics

$ In a simple case with 1 systematic
the problem is not too much
degenerate and the strength is
recovered!

$ For very large strength (*=1000) the
solution di%ers between execution
on CPU and QPU!

$ Large gap largest-smallest QUBO
weights?!

$ Also tested Tabu heuristic, results
equivalent to execution with CPU1 2 3 4 5

Bin

2

4

6

8

10

12

U
nf

ol
de

d

True value

QUBO (CPU, Neal, ! =0)

QUBO (CPU, Neal, ! =1000)

QUBO (QPU, lower noise, ! =0)

QUBO (QPU, lower noise, ! =1000)

! 1.5 ! 1.0 ! 0.5 0.0 0.5
"

syst

16

BLACK = TRUTH
RED = BENCHMARK
OTHERS = QUBO

Conclusions
$ Unfolding (“deconvolution”) central to experimental science, other areas as well (e.g.

sound de-noising, image sharpening)!

$ Presented an implementation of likelihood-based regularized unfolding!

$ Cost function derived from “full-fledged” with some approximations, math follows
naturally to define QUBO weights!

$ Performance on simple models comparable to “classical” methods!

$ Simple models = few bins, well-behaving migrations, short qubits chains!

$ Scaling up to realistic situations with >10 bins and ~100 systematics requires hybrid
approach (e.g. Tabu) or new-generation QPUs (e.g. Pegasus graph QPUs)

17

Peer-reviewed paper: JHEP 11(2019)128 !
Code repository: https://github.com/rdisipio/quantum_unfolding

https://link.springer.com/article/10.1007/JHEP11(2019)128
https://github.com/rdisipio/quantum_unfolding

Backup Slides

Unfolding in Particle Physics
Simulate interactions between particles
(e.g. Higgs boson production from
proton-proton collisions) based on
Standard Model calculations (“truth”)!

Simulate response of detector
(introduces distortion due to limited
resolution, dead material, etc…)
(“reconstruction”)!

Train regressor to learn distortions!

Apply correction (=invert distortions) to
real data (“unfolded”)

Outgoing!
Particle 2

Proton beam 1 Proton beam 2

Detector

Outgoing!
Particle 1
Outgoing!
Particle 1

Theoretical Truth!
(“Standard Model”)

As seen by the Detector!
(simulation ~ real instrument)

Outgoing!
Particle 1

Outgoing!
Particle 2

19

QUBO Weights

xi = ! i + " i

n ! 1!

j =0

2j qn " i + j = ! i + " ia qa

<latexit sha1_base64="fmY6KCdkoYPgbUa0JSDlLgRlz2o=">AAACP3icbZA9SwNBEIb3/IzxK2ppsxgEQQx3IqiFELSxVDBRyMVjbrMxm+ztnbtzYjjun9n4F+xsbSwUsbVzE1P49cLCwzsz7MwbJlIYdN1HZ2x8YnJqujBTnJ2bX1gsLS3XTZxqxmsslrG+CMFwKRSvoUDJLxLNIQolPw97R4P6+Q3XRsTqDPsJb0ZwpURbMEBrBaX6bSDoAfVBJh2wuEn9kKMl36RRkHUP3PwyU1tevn3ZpddBpnwUETdUbHbz/+YyAfl1AEGp7Fbcoehf8EZQJiOdBKUHvxWzNOIKmQRjGp6bYDMDjYJJnhf91PAEWA+ueMOiArtEMxven9N167RoO9b2KaRD9/tEBpEx/Si0nRFgx/yuDcz/ao0U23vNTKgkRa7Y10ftVFKM6SBM2hKaM5R9C8C0sLtS1gENDG3kRRuC9/vkv1Dfrng7lf3TnXL1cBRHgaySNbJBPLJLquSYnJAaYeSOPJEX8urcO8/Om/P+1TrmjGZWyA85H58PEK5u</latexit>

With

1)

2)

3)

(you can obtain the same result using PyQUBO)

20
(we also recommend using numpy.einsum)

https://pyqubo.readthedocs.io/en/latest/
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html

Unfolding 101

Source: “Experience with using unfolding procedures in ATLAS”, Silvia Biondi On Behalf of the ATLAS Collaboration, EPJ Web Conferences 137, 11002 (2017)

Migration Matrix

21

https://www.epj-conferences.org/articles/epjconf/pdf/2017/06/epjconf_conf2017_11002.pdf

Other applications in HEP
$ QFT calculations (cross-sections): see Jordan, Lee, Preskill Science

336:1130, (2012) and arXiv:1404.7115 (2014)!

$ Track-finding: Quantum Associative Memory (à la FTK) using DWave
hamiltonian to minimize quadratic unconstrained binary optimization (QUBO).
99.4% e+ cient with 60 tracks See https://sites.google.com/lbl.gov/hep-qpr!

$ Background estimation: quantum Gaussian process, see arXiv:1803.10520!

$ Quantum Machine Learning: Hamiltonian minimization via tunnelling
instead of back propagation (QNN); quantum support vector machines
(qSVM)!

$ H(! **) vs bkg, Nature 550, 375-379(Oct 2017). DWave Ising hamiltonian
minimized, 36 input variables [J.R. Vlimant, M. Spiropulu et al.]!

$ ttH(! **) signal vs bkg. First attempt using IBM Qiskit with 45(feat) !
PCA! 20(qbits) [W. Guan et al.]!

$ Final State Radiation in Parton Shower [arXiv:1904.03196]!

$ Unfolding as quantum annealing [arXiv:1908.08519] (this work)!

$ Unfolding Quantum Computer Readout Noise [arXiv:1910.01969] (Qiskit)

22

https://sites.google.com/lbl.gov/hep-qpr
https://indico.cern.ch/event/719844/contributions/3047935/attachments/1746478/2828652/vlimant_DW-OpenLab_Nov18.pdf
https://indico.cern.ch/event/719844/contributions/3197680/attachments/1747383/2830067/Quantum_machine_learning_for_hep-_VERSION_31.pdf
https://arxiv.org/abs/1904.03196
https://arxiv.org/abs/1908.08519
https://arxiv.org/abs/1910.01969

